Neurons can anticipate incoming signals by exploiting a physiological mechanism not well understood. This article oers a novel explanation on how a receiver neuron can predict the sender's dynamics in a unidirectionally coupled conguration, in which both sender-receiver follow the evolution of a multi-scale excitable system. We present a novel theoretical viewpoint based on a mathematical object, called canard, to explain anticipation in excitable systems. We provide a numerical approach, which allows to determine the transient eects of canards. To demonstrate the general validity of canard-mediated anticipation in the context of excitable systems, we illustrate our framework in two examples, a multi-scale radio-wave circuit (the van der Pol model) that inspired a caricature neuronal model (the FitzHugh-Nagumo model) and a biophysical neuronal model (a 2-dimensional reduction of the Hodgkin-Huxley model), where canards act as messengers to the senders' prediction. We also propose an experimental paradigm that would enable experimental neuroscientists to validate our predictions. We conclude with an outlook to possible fascinating research avenues to further unfold the mechanisms underpinning anticipation. We envisage that our approach can be employed to a wider class of excitable systems with appropriate theoretical extensions.