Anticipation via canards in excitable systems

Koksal Ersoz, Elif; ,Desroches, Mathieu; Mirasso, Claudio R.; and Rodrigues, Sera fim
Chaos 29, 013111 (2019)

Neurons can anticipate incoming signals by exploiting a physiological mechanism not well understood. This article o ers a novel explanation on how a receiver neuron can predict the sender's dynamics in a unidirectionally coupled con guration, in which both sender-receiver follow the evolution of a multi-scale excitable system. We present a novel theoretical viewpoint based on a mathematical object, called canard, to explain anticipation in excitable systems. We provide a numerical approach, which allows to determine the transient e ects of canards. To demonstrate the general validity of canard-mediated anticipation in the context of excitable systems, we illustrate our framework in two examples, a multi-scale radio-wave circuit (the van der Pol model) that inspired a caricature neuronal model (the FitzHugh-Nagumo model) and a biophysical neuronal model (a 2-dimensional reduction of the Hodgkin-Huxley model), where canards act as messengers to the senders' prediction. We also propose an experimental paradigm that would enable experimental neuroscientists to validate our predictions. We conclude with an outlook to possible fascinating research avenues to further unfold the mechanisms underpinning anticipation. We envisage that our approach can be employed to a wider class of excitable systems with appropriate theoretical extensions.


Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.


Más información De acuerdo