Miguel C. Soriano

Miguel Cornelles Soriano
Profile
Miguel C. Soriano (Miguel Cornelles Soriano) holds a "Ramón y Cajal" research position at the Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC). His research line covers the topics of information processing based on reservoir computing and nonlinear dynamics. His main research interests also include the experimental and numerical study of semiconductor lasers subject to delayed-coupling and the synchronization of chaotic oscillators.

Recent Publications

Dynamical phase transitions in quantum reservoir computing

Martínez-Peña, Rodrigo; Giorgi, Gian Luca; Nokkala, Johannes; Soriano, Miguel C.; Zambrini, Roberta
Physical Review Letters 127, 100502 (1-7) (2021)

High-Performance Reservoir Computing With Fluctuations in Linear Networks

Nokkala, Johannes; Martínez-Peña, Rodrigo; Zambrini, Roberta; Soriano, Miguel C.
IEEE Transactions on Neural Networks and Learning Systems , (2021)

Time-Delay Identification Using Multiscale Ordinal Quantifiers

Soriano, Miguel C.; Zunino, Luciano
Entropy 23, 969 (2021)

Opportunities in Quantum Reservoir Computing and Extreme Learning Machines

Mujal, Pere; Martínez-Peña, Rodrigo; Nokkala, Johannes; García-Beni, Jorge; Giorgi, Gian Luca; Soriano, Miguel C.; Zambrini, Roberta
Advanced Quantum Technologies , 2100027 (2021)

Unveiling the role of plasticity rules in reservoir computing

Morales, Guillermo B.; Mirasso, Claudio R.; Soriano, Miguel C.
Neurocomputing , (2021)

Ongoing Research projects

POST-DIGITAL

POST-DIGITAL: Neuromorphic computing in photonic and other nonlinear media

P.I.: Ingo Fischer, Claudio Mirasso
POST-DIGITAL is a Marie Skłodowska-Curie Innovative Training Network, funded by the European Union’s Horizon 2020 research and innovation programme. POST-DIGITAL is committed to form a new generation of engineers and researchers, affording ...

ADOPD

Adaptive Optical Dendrites

P.I.: Ingo Fischer, Claudio Mirasso
The increased demand for computation with low energy consumption requires entirely novel hardware concepts. In ADOPD we develop ultra-fast computational units based on optical-fiber technologies exploiting information processing principles used by neurons ...

QuaResC

Quantum machine learning using reservoir computing

P.I.: Miguel C. Soriano, Roberta Zambrini
The QuaResC project engages in a new collaboration UIB and CSIC researchers at IFISC with the objective to address an interdisciplinary topic between artificial intelligence and quantum physics: quantum machine learning using ...

QUAREC

Machine learning with quantum reservoir computing

P.I.: Roberta Zambrini
Project funded by the government of the Balearic Islands with the goal of extending Reservoir Computing into the quantum domain. The project is mainly theoretical/numerical, but also deals with the identification of ...

Contact Form


This web uses cookies for data collection with a statistical purpose. If you continue browsing, it means acceptance of the installation of the same.


More info I agree