Haros graphs: an exotic representation of real numbers

Calero-Sanz, Jorge; Luque, Bartolo; Lacasa, Lucas
Journal of Complex Networks 10, cnac043 (2022)

This paper introduces Haros graphs, a construction which provides a graph-theoretical representation of real numbers in the unit interval reached via paths in the Farey binary tree. We show how the topological structure of Haros graphs yields a natural classification of the reals numbers into a hierarchy of families. To unveil such classification, we introduce an entropic functional on these graphs and show that it can be expressed, thanks to its fractal nature, in terms of a generalised de Rham curve. We show that this entropy reaches a global maximum at the reciprocal of the Golden number and otherwise displays a rich hierarchy of local maxima and minima that relate to specific families of irrationals (noble numbers) and rationals, overall providing an exotic classification and representation of the reals numbers according to entropic principles. We close the paper with a number of conjectures and outline a research programme on Haros graphs.


This web uses cookies for data collection with a statistical purpose. If you continue browsing, it means acceptance of the installation of the same.


More info I agree