During the last few years, statistical physics has received increasing attention as a framework for the analysis of real complex systems; yet, this is less clear in the case of international political events, partly due to the complexity in securing relevant quantitative data on them. Here, we analyze a detailed dataset of violent events that took place in Ukraine since January 2021 and analyze their temporal and spatial correlations through entropy and complexity metrics and functional networks. Results depict a complex scenario with events appearing in a non-random fashion but with eastern-most regions functionally disconnected from the remainder of the country—something opposing the widespread “two Ukraines” view. We further draw some lessons and venues for future analyses.