Inverse Percolation and Random Sequential Adsorption with multisite occupation

Over the years, many variations from the original model have been introduced, some of them with a completely different scaling and universal properties. Here, we are interested in the inverse percolation problem with multiple occupation, which is how the transition is affected by the removal of groups of components from lattices with different features. The process starts with an initial configuration, where all sites are occupied and the system is diluted by randomly removing k correlated sites (needles, tiles, etc) from the surface. The central idea is to find the maximum concentration of occupied sites for which the connectivity disappears. Numerical simulations and finite-size scaling analysis have been carried out to find this particular value, the “inverse” percolation threshold, that determines a well-defined geometrical phase transition in the system. It is observed that the structure of the removed species can lead to jams that cause the loss of the phase transition.



Zoom: https://us02web.zoom.us/j/83829318876?pwd=Z2pqbUtIMEV3NUQvU0hpakp0NGtsUT09

Meeting ID: 838 2931 8876

Passcode: 797728



Contact details:

Tobias Galla
971 25 98 77
Contact form


This web uses cookies for data collection with a statistical purpose. If you continue browsing, it means acceptance of the installation of the same.


More info I agree