IDEA IMPROVING DATA DECODING IN OPTICAL COMMUNICATION NETWORKS ALL-OPTICALLY USING NEURO-INSPIRED PHOTONIC SYSTEMS

  • I.P.: Miguel C. Soriano, Ingo Fischer, Claudio Mirasso
  • Coordinador: Ingo Fischer
  • Partners: IFISC-CSIC, IFISC-UIB, Universidad de la Laguna
  • Data d'inici: 1 de gener de 2017
  • Data de finalització: 29 de juliol de 2020

Novel technologies related to optical communications, sensing, the Internet of Things (IoT) and artificial intelligence have been generating unique opportunities and potential to enhance our quality-of-life, and to provide new services for our society and economy. However, the perspective to manage and process the dramatically increasing amount of data relies on our ability to handle these data with high-speed, suitable hardware and much improved energy efficiency.
In this project, it is our aim to develop novel all-optical decoding schemes for optical communication networks that are based on neuro-inspired concepts and are able to fulfill the previous requirements.
Excellently performing neuro-inspired concepts and algorithms, in particular related to machine learning, have been developed, but their energy requirements and lack of speed hinder their implementation in a significant number of current and future applications. In particular, this approach faces severe challenges, when trying to apply it in all-optical communication networks.
Hence, in this proposal we follow a different approach, building upon our experience of designing and realizing neuro-inspired information processing systems, mainly in photonic hardware. In contrast to traditional machine learning, we replace the usual structure of a network composed of multiple connected nodes by a simple dynamical system. The latter comprises a nonlinear node subject to delayed feedback, exploiting the dynamical richness of the delay systems for computational purposes. We aim at extending these concepts by introducing novel pre-processing techniques, taking advantage of multilevel systems and applying novel learning concepts adapted to the particular data and processing requirements. To mitigate the risk, our approach could also be applied in the electronic domain after the signal detection.
The guiding principle will be the realization and implementation of data decoding techniques that combine conceptual and hardware simplicity, high-speed, flexibility, energy efficiency and high performance.
Altogether, this project represents an important step towards ultra-fast, energy-efficient data decoding techniques, complementary to standard approaches. It promises the identification of minimum requirements and the implementation of the concept with high performance. Ultimately, it serves a digital society, in which technology is harnessed to improve data handling and processing and to provide new services.

Investigadors

  • Apostolos Argyris

    Apostolos Argyris

  • Miguel C. Soriano

    Miguel C. Soriano

  • Ingo Fischer

    Ingo Fischer

  • Claudio Mirasso

    Claudio Mirasso

Publicacions recents

Unveiling the role of plasticity rules in reservoir computing

Morales, Guillermo B.; Mirasso, Claudio R.; Soriano, Miguel C.
Neurocomputing 461, 705-715 (2021)

Fast physical repetitive patterns generation for masking in time-delay reservoir computing

Argyris, Apostolos; Schwind, Janek; Fischer, Ingo
Scientific Reports 11, 6701 (2021)

nMNSD—A Spiking Neuron-Based Classifier That Combines Weight-Adjustment and Delay-Shift

Susi, G.; Antón-Toro, L. F.; Maestú, F.; Pereda, E.; Mirasso, C.
Frontiers in Neuroscience 15, Article 582608 (2021)

Introduction to JSTQE Issue on Photonics for Deep Learning and Neural Computing

Prucnal, P.R.; Shastri, B.J.; Fischer, I.; Brunner, D.
IEEE Journal of Selected Topics in Quantum Electronics 26 (1), 0200103 (1-3) (2020)

Constructive Role of Noise for High-Quality Replication of Chaotic Attractor Dynamics Using a Hardware-Based Reservoir Computer

Estébanez, Irene; Fischer, Ingo; Soriano, Miguel C.
Physical Review Applied 12, 034058 (2019)

Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.


Més informació D'accord