ARCTIC AIR TRANSPORT AS INFORMATION AND COMPUTATION

  • I.P.: Massimiliano Zanin
  • Coordinador: Massimiliano Zanin
  • Fecha de inicio: 1 de Marzo de 2020
  • Fecha de final: 28 de Febrero de 2025

This project is an ERC Starting Grant of panel SH2, "Institutions, Values, Environment and Space". Air transport has by and large been studied as a transportation process, in which different elements, e.g. aircraft or passengers, move within the system. While intuitive, this approach entails several drawbacks, including the need for large-scale simulations, the reliance on real data, and the difficulty of extracting macro-scale conclusions from large quantities of micro- scale results. The lack of a better approach is in part responsible for our inability to fully understand delay propagation, one of the most important phenomena in air transport.

ARCTIC proposes an ambitious program to change the conceptual framework used to analyse air transport, inspired by the way the brain is studied in neuroscience. It is based on understanding air transport as an information processing system, in which the movement of aircraft is merely a vehicle for information transfer. Airports then become computational units, receiving information from their neighbours through inbound flights under the form of delays; processing it in a potentially non-linear way; and redistributing the result to the system as outbound delays. As already common in neuroscience, such computation can be made explicit by using a combination of information sciences and statistical physics techniques: from the detection of information movements through causality metrics, up to the representation of the resulting transfer structures through complex networks and their topological properties. The approach also entails important challenges, e.g. the definition of appropriate metrics or the translation of the obtained insights into implementable policies.
ARCTIC’s methodology will be used over the next five years to characterize and model delay propagation, as well as to limit its societal and economic impact.

Investigadores

  • Massimiliano Zanin

    Massimiliano Zanin

Publicaciones recientes

Low Cost Carriers Induce Specific and Identifiable Delay Propagation Patterns: An Analysis of the EU and US Systems

Gil-Rodrigo, Sofia; Zanin, Massimiliano
IEEE Access 12, 75323 - 75336 (2024)

How representative are air transport functional complex networks? A quantitative validation

Acharya, Kishor; Olivares, Felipe; Zanin, Massimiliano
Chaos 34, 043133 (2024)

Status quo and challenges in air transport management research

Wandelt, Sebastian; Antoniou, Constantinos; Birolini, Sebastian; Delahaye, Daniel; Dresner, Martin; Fu, Xiaowen; Gössling, Stefan; Hong, Seock-Jin; Odoni, Amedeo R.; Zanin, Massimiliano; Zhang, Anming; Zhang, Hui; Zhang, Yahua; Sun, Xiaoqian
Journal of the Air Transport Research Society 2, 100014 (2024)

Reconstructing brain functional networks through identifiability and deep learning

Zanin, Massimiliano; Aktürk, Tuba; Yıldırım, Ebru; Yerlikaya, Deniz; Yener, Görsev; Güntekin, Bahar
Network Neuroscience 8, 241–259 (2024)

Identifiability of complex networks

Zanin, Massimiliano; Buldú, J.M.
Frontiers in Physics 11, (2023)

Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.


Más información De acuerdo