The resistance distance is a squared Euclidean metric on the vertices of a graph derived from the consideration of a graph as an electrical circuit. Its connection with the commute time of a random walker on the graph has made it particularly appealing for the analysis of networks. Here, we prove that the resistance distance is given by a difference of “mass concentrations” obtained at the vertices of a graph by a diffusive process. The nature of this diffusive process is characterized here by means of an operator corresponding to the matrix logarithm of a Perron-like matrix based on the pseudoinverse of the graph Laplacian. We prove also that this operator is indeed the Laplacian matrix of a signed version of the original graph, in which nonnearest neighbors’ “interactions” are also considered. In this way, the resistance distance is part of a family of squared Euclidean distances emerging from diffusive dynamics on graphs.
Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.