We discuss the collective dynamics of self-propelled particles with selective attraction and repulsion interactions. Each particle, or individual, may respond differently to its neighbours depending on the sign of their relative velocity. Thus, it is able to distinguish approaching (coming closer) and retreating (moving away) individuals. This differentiation of the social response is motivated by the response to looming visual stimuli and may be seen as a generalization of the previously proposed escape and pursuit interactions motivated by empirical evidence for cannibalism as a driving force of collective migration in locusts and Mormon crickets. The model can account for different types of behaviour such as pure attraction, pure repulsion or escape and pursuit, depending on the values (signs) of the different response strengths. It provides, in the light of recent experimental results, an interesting alternative to previously proposed models of collective motion with an explicit velocity–alignment interaction. We discuss the derivation of a coarse-grained description of the system dynamics, which allows us to derive analytically the necessary condition for emergence of collective motion. Furthermore, we analyse systematically the onset of collective motion and clustering in numerical simulations of the model for varying interaction strengths. We show that collective motion arises only in a subregion of the parameter space, which is consistent with the analytical prediction and corresponds to an effective escape and/or pursuit response.
Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.