Photonic simulation of giant atom decay

Longhi, Stefano
Optics Letters 45, 3017-3020 (2020)

Spontaneous emission of an excited atom in a featureless continuum of electromagnetic modes is a fundamental process in quantum electrodynamics associated with an exponential decay of the quantum emitter to its ground state accompanied by an irreversible emission of a photon. However, such a simple scenario is deeply modified when considering a “giant” atom, i.e., an atom whose dimension is larger than the wavelength of the emitted photon. In such an unconventional regime, non-Markovian effects and strong deviations from an exponential decay are observed owing to interference effects arising from nonlocal light–atom coupling. Here we suggest a photonic simulation of non-Markovian giant atom decay, based on light escape dynamics in an optical waveguide nonlocally coupled to a waveguide lattice. Major effects, such as nonexponential decay, enhancement, or slowing down of the decay, and formation of atom-field dark states can be emulated in this system.

Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.

Más información De acuerdo