Driven by the remarkable breakthroughs during the past decade, photonics neural networks have experienced a revival. Here, we provide a general overview of progress over the past decade, and sketch a roadmap of important future developments. We focus on photonic implementations of the reservoir computing machine learning paradigm, which offers a conceptually simple approach that is amenable to hardware implementations. In particular, we provide an overview of photonic reservoir computing implemented via either spatio temporal or delay dynamical systems. Going beyond reservoir computing, we discuss recent advances and future challenges of photonic implementations of deep neural networks, of the quest for learning methods that are hardware-friendly as well as realizing autonomous photonic neural networks, i.e. with minimal digital electronic auxiliary hardware.
Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.