Activity-based models appeared as an answer to the limitations of the traditional trip-based and tour-based four-stage models. The fundamental assumption of activity-based models is that travel demand is originated from people performing their daily activities. This is why they include a consistent representation of time, of the persons and households, time-dependent routing, and microsimulation of travel demand and traffic. In spite of their potential to simulate traffic demand management policies, their practical application is still limited. One of the main reasons is that these models require a huge amount of very detailed input data hard to get with surveys. However, the pervasive use of mobile devices has brought a valuable new source of data. The work presented here has a twofold objective: first, to demonstrate the capability of mobile phone records to feed activity-based transport models, and, second, to assert the advantages of using activity-based models to estimate the effects of traffic demand management policies. Activity diaries for the metropolitan area of Barcelona are reconstructed from mobile phone records. This information is then employed as input for building a transport MATSim model of the city. The model calibration and validation process proves the quality of the activity diaries obtained. The possible impacts of a cordon toll policy applied to two different areas of the city and at different times of the day is then studied. Our results show the way in which the modal share is modified in each of the considered scenario. The possibility of evaluating the effects of the policy at both aggregated and traveller level, together with the ability of the model to capture policy impacts beyond the cordon toll area confirm the advantages of activity-based models for the evaluation of traffic demand management policies.
Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.