Heat flux of a granular gas with homogeneous temperature

Khalil, Nagi
Journal of Statistical Mechanics: Theory and Experiment 2016, 103209 (2016)

A steady state of granular gas with homogeneous granular temperature, no mass flow, and nonzero heat flux is studied. The state is created by applying an external position-dependent force or by enclosing the grains inside a curved 2D silo. At a macroscopic level, the state is identified with one solution to the inelastic Navier-Stokes equations, due to the coupling between the heat flux induced by the density gradient and the external force. In contrast, at the mesoscopic level, by exactly solving a BGK model or the inelastic Boltzmann equation in an approximate way, a one-parametric family of solutions is found. Molecular dynamics simulations of the system in the
quasi-elastic limit are in agreement with the theoretical results.


Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.


Más información De acuerdo