We numerically study the subharmonic response of a heterogeneous pool of neurons to a pair of independent inputs. The neurons are stimulated with periodic pulse trains of frequencies f1 = 2 Hz and f2 = 3 Hz, and with inharmonic pulses whose frequencies f1 and f2 are equally shifted an amount f. When both inputs are subthreshold, we find that the neurons respond at a frequency equal to f2−f1 in the harmonic situation (f = 0), that increases linearly with f in the inharmonic case. Thus the neurons detect a frequency not present in the input; this effect is termed “ghost resonance”. When one of the inputs is slightly suprathreshold the ghost resonance persists, but responses related with the frequency of the suprathreshold input also emerge. This behavior must be taken into account in experimental studies of signal integration and coincidence detection by neuronal pools.
Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.