Generalized Aubry-André self-duality and mobility edges in non-Hermitian quasiperiodic lattices

Liu, Tong; Guo, Hao; Pu, Yong; Longhi, Stefano
Physical Review B 102, 024205 (1-10) (2020)

We demonstrate the existence of generalized Aubry-André self-duality in a class of non-Hermitian quasiperiodic lattices with complex potentials. From the self-duality relations, the analytical expression of mobility edges is derived. Compared to Hermitian systems, mobility edges in non-Hermitian ones not only separate localized from extended states but also indicate the coexistence of complex and real eigenenergies, making possible a topological characterization of mobility edges. An experimental scheme, based on optical pulse propagation in synthetic photonic mesh lattices, is suggested to implement a non-Hermitian quasicrystal displaying mobility edges.


Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.


Más información De acuerdo