Determining the sub-Lyapunov exponent of delay systems from time series

Jüngling, Thomas; Soriano, Miguel C.; Fischer, Ingo
Physical Review E 91, 062908 (1-9) (2015)

For delay systems the sign of the sub-Lyapunov exponent (sub-LE) determines key dynamical properties. This includes the properties of strong and weak chaos and of consistency. Here we present a robust algorithm based on reconstruction of the local linearized equations of motion, which allows for calculating the sub-LE from time series. The algorithm is inspired by a method introduced by Pyragas for a nondelayed drive-response scheme [K. Pyragas, Phys. Rev. E 56, 5183 (1997)]. In the presented extension to delay systems, the delayed feedback takes over the role of the drive, whereas the response of the low-dimensional node leads to the sub-Lyapunov exponent. Our method is based on a low-dimensional representation of the delay system. We introduce the basic algorithm for a discrete scalar map, extend the concept to scalar continuous delay systems, and give an outlook to the case of a full vector-state system, from which only a scalar observable is recorded.

Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.

Más información De acuerdo