Complex Ginzburg-Landau Equation in the Presence of Walls and Corners

Eguiluz, Victor M.; Hernandez-Garcia, Emilio; Piro, Oreste
Physical Review E 64, 036205 (1-10) (2001)

We investigate the influence of walls and corners (with Dirichlet
and Neumann boundary conditions) in the evolution of
twodimensional autooscillating fields described by the Complex
Ginzburg-Landau equation. Analytical solutions are found, and
arguments provided, to show that Dirichlet walls introduce strong
selection mechanisms for the wave pattern. Corners between walls
provide additional synchronization mechanisms and associated
selection criteria. The numerical results fit well with the
theoretical predictions in the parameter range studied.

Additional files

Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.

Más información De acuerdo