Binary-state dynamics on complex networks: Stochastic pair approximation and beyond

Peralta, Antonio F.;Toral, Raul
Physical Review Research 2, 043370 (1-25) (2020)

Theoretical approaches to binary-state models on complex networks are generally restricted to infinite size systems, where a set of non-linear deterministic equations is assumed to characterize its dynamics and stationary properties. We develop in this work the stochastic formalism of the different compartmental approaches, these are: approximate master equation (AME), pair approximation (PA) and heterogeneous mean field (HMF), in descending order of accuracy. Using different system-size expansions of a general master equation, we are able to obtain approximate solutions of the fluctuations and finite-size corrections of the global state. On the one hand, far from criticality, the deviations from the deterministic solution are well captured by a Gaussian distribution whose properties we derive, including its correlation matrix and corrections to the average values. On the other hand, close to a critical point there are non-Gaussian statistical features that can be described by the finite-size scaling functions of the models. We show how to obtain the scaling functions departing only from the theory of the different approximations. We apply the techniques for a wide variety of binary-state models in different contexts, such as epidemic, opinion and ferromagnetic models.

Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.

Más información De acuerdo