Autonomous dynamical systems based on hardware implementations of delay-reservoir computers

Irene Estébanez (Supervisors: Miguel C. Soriano, Ingo Fischer)
Master Thesis (2018)

Reservoir computing (RC) is a machine learning technique allowing for novel approaches to realize trainable autonomous nonlinear oscillators. Here we employ delay-based echo state networks with output feedback, simple yet powerful implementations of neuromorphic systems, to reproduce the dynamical behavior of a Rössler chaotic system. Our hardware implementation relies on a delay-based RC topology, and consists of two main elements: an analog Mackey Glass nonlinearity and a Raspberry Pi board. We demonstrate the capacity of our experiment to generate chaotic time-traces in an autonomous manner, and we prove that noise can play a constructive role in the training process, when realizing nonlinear oscillators based on closed-loop operation. We use phase-space reconstruction of the chaotic attractor and the comparison of the frequency spectra, along with recurrence quantification analysis (RQA), to perform a nonlinear data analysis with the aim of comparing the autonomous operation and the original time-series in more detail.


Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.


Más información De acuerdo