Seagrasses are vital organisms in coastal waters, and the drastic demise of their population in the last decades has worrying implications for marine ecosystems. Spatial models for seagrass meadows provide a mathematical framework to study their dynamical processes and emergent collective behavior. These models are crucial to predict the response of seagrasses to different global warming scenarios, analyze the resilience of existing seagrass patterns, and optimize restoration strategies. In this article, we propose a model based on the plant clonal growth rules that includes interactions among different species of seagrasses. We present a theoretical analysis of the model considering the specific case of the seagrass-seaweed interaction between Cymodocea nodosa and Caulerpa prolifera. Our simulations successfully reproduce field observations of shoot densities in mixed meadows in the Ebro River Delta in the Mediterranean Sea. Besides, the proposed model allows us to investigate the possible underlying mechanisms that mediate the interaction among macrophytes.
Buscar en todas las publicaciones
Legal
Coming soon
intranet
Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.