Bifurcations and multistability in adaptive vascular networks

Transport networks are crucial for the functioning of natural and technological systems. We study a mathematical model of vascular network adaptation, where the network structure dynamically adjusts to changes in blood flow and pressure. The cost exponent $\gamma$ tunes the vessel growth in the adaptation rule, and we test the hypothesis that the cost exponent is $\gamma= 1/2$ for vascular systems. We first perform a bifurcation analysis for a simple triangular network motif with fluctuating demand, and then conduct numerical simulations on network topologies extracted from perivascular networks of rodent brains. We compare the model predictions with experimental data and find that $\gamma$ is closer to 1 than to 1/2 for the model to be consistent with the data [Klemm and Martens, Chaos (2023)]. Our study thus addresses two questions: (i) Is a specific measured flow network consistent in terms of physical reality? (ii) Is the adaptive dynamic model consistent with measured network data? We conclude that the model can capture some aspects of vascular network formation and adaptation, but also suggest some limitations and directions for future research.  



Presential in the seminar room. Zoom stream: 



https://us06web.zoom.us/j/98286706234?pwd=bm1JUFVYcTJkaVl1VU55L0FiWDRIUT09



Detalles de contacto:

Maxi San Miguel

Contact form


Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.


Más información De acuerdo