The problem of time-dependent particle transport in quantum conductors is nowadays a well established topic. In contrast, the way in which energy and heat flow in mesoscopic systems subjected to dynamical drivings is a relatively new subject that cross-fertilize both fundamental developments of quantum thermodynamics and practical applications in nanoelectronics and quantum information. In this short review, we discuss from a thermodynamical perspective recent investigations on nonstationary heat and work generated in quantum systems, emphasizing open questions and unsolved issues.
Search all publications
Legal
Coming soon
intranet
This web uses cookies for data collection with a statistical purpose. If you continue browsing, it means acceptance of the installation of the same.