Growing Scale-Free Networks with Small World Behavior

Klemm, Konstantin; Eguíluz, Víctor M.
Phys. Rev. E 65, 057102 (2002)

In the context of growing networks, we introduce a simple dynamical model that unifies the generic features of real networks: scale-free distribution of degree and the small-world effect. While the average shortest path length increases logarithmically as in random networks, the clustering coefficient assumes a large value independent of system size. We derive analytical expressions for the clustering coefficient in two limiting cases: random [C~(ln N)2/N] and highly clustered (C = 5/6) scale-free networks.

More info


This web uses cookies for data collection with a statistical purpose. If you continue browsing, it means acceptance of the installation of the same.


More info I agree