Analytical Solution of the Voter Model on Uncorrelated Networks

Vazquez, F.; Eguiluz, V. M.
New Journal of Physics 10 No.6, 063011 (1-19) (2008)

We present a mathematical description of the voter model dynamics on heterogeneous networks. When the average degree of the graph is $\\\\mu \\\\leq 2$ the system reaches complete order exponentially fast. For $\\\\mu >2$, a finite system falls, before it fully orders, in a quasistationary state in which the average density of active links (links between opposite-state nodes) in surviving runs is constant and equal to $\\\\frac{(\\\\mu-2)}{3(\\\\mu-1)}$, while an infinite large system stays ad infinitum in a partially ordered stationary active state. The mean life time of the quasistationary state is proportional to the mean time to reach the fully ordered state $T$, which scales as $T \\\\sim \\\\frac{(\\\\mu-1) \\\\mu^2 N}{(\\\\mu-2)\\\\,\\\\mu_2}$, where $N$ is the number of nodes of the network, and $\\\\mu_2$ is the second moment of the degree distribution. We find good agreement between these analytical results and numerical simulations on random networks with various degree distributions.


This web uses cookies for data collection with a statistical purpose. If you continue browsing, it means acceptance of the installation of the same.


More info I agree