By interpreting a temporal network as a trajectory of a latent graph dynamical system, we introduce the concept of dynamical instability of a temporal network, and construct a measure to estimate the network Maximum Lyapunov Exponent (nMLE) of a temporal network trajectory. Extending conventional algorithmic methods from nonlinear time-series analysis to networks, we show how to quantify sensitive dependence on initial conditions, and estimate the nMLE directly from a single network trajectory. We validate our method for a range of synthetic generative network models displaying low and high dimensional chaos, and finally discuss potential applications.
Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.