Kramers polarization in strongly correlated carbon nanotube quantum dots

Lim, J.S.; Lopez, R.; Giorgi, G.L.; Sanchez, D.
Physical Review B 83, 155325 (1-8) (2011)

Ferromagnetic contacts put in proximity with carbon nanotubes induce spin and orbital polarizations. These polarizations affect dramatically the Kondo correlations occurring in quantum dots formed in a carbon nanotube, inducing effective fields in both spin and orbital sectors. As a consequence, the carbon nanotube quantum dot spectral density shows a fourfold split SU(4) Kondo resonance. Furthermore, the presence of spin-orbit interactions leads to the occurrence of an additional polarization among time-reversal electronic states (polarization in the time-reversal symmetry or Kramers sector). Here, we estimate the magnitude for the Kramer polarization in realistic carbon nanotube samples and find that its contribution is comparable to the spin and orbital polarizations. The Kramers polarization generates a new type of effective field that affects only the time-reversal electronic states. We report new splittings of the Kondo resonance in the dot spectral density which can be understood only if Kramers polarization is taken into account. Importantly, we predict that the existence of Kramers polarization can be experimentally detected by performing nonlinear differential conductance measurements. We also find that, due to the high symmetry required to build SU(4) Kondo correlations, its restoration by applying an external field is not possible in contrast to the compensated SU(2) Kondo state observed in conventional quantum dots.

Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.

Més informació D'accord