Delay-based Reservoir Computing: Noise Effects in a Combined Analog and Digital Implementation

Soriano, Miguel C.; Ortín, Silvia; Keuninckx, Lars; Appeltant, Lennert; Danckaert, Jan; Pesquera, Luis; Van der Sande, Guy
IEEE Transactions on Neural Networks and Learning Systems 26, 388-393 (2015)

Reservoir computing is a paradigm in machine learning whose processing capabilities rely on the dynamical behavior of recurrent neural networks. We present a mixed analog and digital implementation of this concept with a nonlinear analog electronic circuit as a main computational unit. In our approach, the reservoir network can be replaced by a single nonlinear element with delay via time-multiplexing. We analyze the influence of noise on the performance of the system for two benchmark tasks: 1) a classification problem and 2) a chaotic time-series prediction task. Special attention is given to the role of quantization noise, which is studied by varying the resolution in the conversion interface between the analog and digital worlds.

Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.

Més informació D'accord