Juan M. Lopez, Dept. of Mathematics & Statistics, Arizona State University
16 de juliol de 2003 a les 15:00
Sala de Juntes, Ed. Mateu Orfila
We consider how time-periodic 2D flows may become unstable to 3D perturbations. The Karman vortex street, the 2D periodically shedding wake of a circular cylinder, is the prototypical example. We shall consider this as well as a periodically forced enclosed flow as examples to illustrate the abstract problem in equivariant bifurcations describing the 2D to 3D transitions. The talk will present results from normal form analysis, Floquet stability analysis, computations of the 3D Navier-Stokes equations, and laboratory experiments.
Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.