Using Network Theory and Machine Learning to predict El Niño

Nooteboom, P.D.; Feng, Q.Y.; Lopez, C.;Hernandez-Garcia, E.; Dijkstra, H.A.
Earth System Dynamics 9, 969-983 (2018)

The skill of current predictions of the warm phase of the El Niño Southern Oscillation (ENSO) reduces significantly beyond a lag of six months. In this paper, we aim to increase this prediction skill at lags up to one year. The new method to do so combines a classical Autoregressive Integrated Moving Average technique with a modern machine learning approach (through an Artificial Neural Network). The attributes in such a neural network are derived from topological properties of Climate Networks and are tested on both a Zebiak-Cane-type model and observations. For predictions up to six months ahead, the results of the hybrid model give a better skill than the CFSv2 ensemble prediction by the National Centers for Environmental Prediction (NCEP). Moreover, results for a twelve-month lead time prediction have a similar skill as the shorter lead time predictions.

Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.

Más información De acuerdo