Reducing hardware requirements for entanglement distribution via joint hardware-protocol optimization

Labay Mora, Adrià; Ferreira da Silva, Francisco; Wehner, Stephanie
Quantum Science and Technology 9, 045001 (2024)

We conduct a numerical investigation of fiber-based entanglement distribution over distances of up to 1600 km using a chain of processing-node quantum repeaters. We determine minimal hardware requirements while simultaneously optimizing over protocols for entanglement generation and entanglement purification, as well as over strategies for entanglement swapping. Notably, we discover that through an adequate choice of protocols the hardware improvement cost scales linearly with the distance covered. Our results highlight the crucial role of good protocol choices in significantly reducing hardware requirements, such as employing purification to meet high-fidelity targets and adopting a swap as soon as possible policy for faster rates. To carry out this analysis, we employ an extensive simulation framework implemented with NetSquid, a discrete-event-based quantum-network simulator, and a genetic-algorithm-based optimization methodology to determine minimal hardware requirements.


Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.


Más información De acuerdo