Noisy voter models in switching environments

Caligiuri, Annalisa; Galla, Tobias
Physical Review E 108, 044301 (2023)

We study the stationary states of variants of the noisy voter model, subject to fluctuating parameters or external environments. Specifically, we consider scenarios in which the herding-to-noise ratio switches randomly and on different timescales between two values. We show that this can lead to a phase in which polarized and heterogeneous states exist. Second, we analyze a population of noisy voters subject to groups of external influencers, and show how multipeak stationary distributions emerge. Our work is based on a combination of individual-based simulations, analytical approximations in terms of a piecewise-deterministic Markov processes (PDMP), and on corrections to this process capturing intrinsic stochasticity in the linear-noise approximation. We also propose a numerical scheme to obtain the stationary distribution of PDMPs with three environmental states and linear velocity fields.


Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.


Más información De acuerdo