We study the control of oscillations in a system of inhibitory coupled noisy excitable and oscillatory units. Using dynamical properties of inhibition, we find regimes when the oscillations can be suppressed but the information signal of a certain frequency can be transmitted through the system. The mechanism of this phenomenon is a resonant interplay of noise and the transmission signal provided by certain value of inhibitory coupling. Analyzing a system of three or four oscillators representing neural clusters, we show that this suppression can be effectively controlled by coupling and noise amplitudes.