We study the completely synchronized states (CSSs) of a system of coupled logistic maps as a function of three parameters: interaction strength (ɛ), range of the interaction (α), that can vary from first neighbors to global coupling, and a parameter (β) that allows one to scan continuously from nondelayed to one-time delayed dynamics. In the α−ɛ plane we identify periodic orbits, limit cycles, and chaotic trajectories, and describe how these structures change with delay. These features can be explained by studying the bifurcation diagrams of a two-dimensional nondelayed map. This allows us to understand the effects of one-time delays on CSSs, e.g., regularization of chaotic orbits and synchronization of short-range coupled maps, observed when the dynamics is moderately delayed. Finally, we substitute the logistic map with cubic and logarithmic maps, in order to test the robustness of our findings.
Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.