The time needed by a quantum system to reach a state fully distinguishable from the original one provides a natural way of determining how fast the corresponding dynamical evolution is. This orthogonality time admits a lower bound, expressible in terms of the energy's expectation value and the energy's standard deviation, that yields a 'quantum speed limit'. Composite quantum systems need entanglement in order to achieve this limit. So far, most studies on the connection between entanglement and the quantum speed limit have focused on the case of non-interacting systems. The connection between quantum speed and entanglement is systematically investigated here for the case of a system of two interacting qubits, taking into consideration all possible initial states that evolve into an orthogonal one.
Buscar en todas las publicaciones
Legal
Coming soon
intranet
Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.