There are several phenomena in nature governed by simultaneous or intermittent diffusion and advection processes. Many of these systems are networked by their own nature. Here we propose a degree-biased advection processes to undirected networks. For that purpose we define and study the degree-biased advection operator. We then develop a degree-biased advection-diffusion equation on networks and study its general properties. We give computational evidence of the utility of this new model by studying random graphs as well as a real-life patched landscape network in southern Madagascar. In the last case we show that the foraging movement of the species L. catta in this environment occurs mainly in a diffusive way with important contributions of advective motions in agreement with previous empirical observations.
Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.