Anticipated Synchronization (AS) is a form of synchronization that occurs when a unidirectional influence is transmitted from an emitter to a receiver, but the receiver system leads the emitter in time. This counterintuitive phenomenon can be a stable solution of two dynamical systems coupled in a master-slave configuration when the slave is subject to a negative delayed self-feedback. Many examples of AS dynamics have been found in different systems, however, theoretical and experimental evidence for it in the brain has been lacking. In this thesis work we investigate the existence of AS in neuronal circuits when the delayed feedback is replaced by an inhibitory loop mediated by chemical synapses. At the neuronal level, we show the existence of AS in 3-neuron or 3-neuron-populations microcircuits, where the self-feedback is provided either by an interneuron or by a subpopulation of inhibitory neurons. A smooth transition from delayed synchronization (DS) to AS typically occurs when the inhibitory synaptic conductance is increased. The phenomenon is shown to be robust for a wide range of model parameters within a physiological range. The role of spike-timing-dependent plasticity in DSAS transitions is also investigated. The results obtained from the model are compared with those obtained experimentally in monkeys performing certain cognitive tasks. In some cases a dominant directional influence from one cortical area to another is accompanied by either a negative or a positive time delay. We present a model for AS between two brain regions and compare its results to the experimental data, obtaining an excellent agreement.
Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.