Anomalous scaling in an age-dependent branching model

Keller-Schmidt, S.; Tugrul, M.; Eguiluz, V.M.; Hernandez-Garcia, E.; Klemm, K.
Physical Review E 91, 022803 (1-6) (2015)

We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age $tau$ as $tau^{-alpha}$. Depending on the exponent $alpha$, the scaling of tree depth with tree size $n$ displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition ($alpha=1$) tree depth grows as $(log n)^2$. This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus providing a theoretical support for age-dependent speciation and associating it to the occurrence of a critical point.

Additional files


Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.


Más información De acuerdo