Anomalous mobility edges in one-dimensional quasiperiodic models

Liu, Tong;, Xia, Xu; Longhi, Stefano; Sanchez-Palencia, Laurent
SciPost Physics 12, 027 (1-25) (2022)

Mobility edges, separating localized from extended states, are known to arise in the
single-particle energy spectrum of disordered systems in dimension strictly higher than
two and certain quasiperiodic models in one dimension. Here we unveil a different
class of mobility edges, dubbed anomalous mobility edges, that separate energy intervals
where all states are localized from energy intervals where all states are critical in
diagonal and off-diagonal quasiperiodic models. We first introduce an exactly solvable
quasi-periodic diagonal model and analytically demonstrate the existence of anomalous
mobility edges. Moreover, numerical multifractal analysis of the corresponding wave
functions confirms the emergence of a finite energy interval where all states are critical.
We then extend the sudy to a quasiperiodic off-diagonal Su-Schrieffer-Heeger model and
show numerical evidence of anomalous mobility edges. We finally discuss possible experimental
realizations of quasi-periodic models hosting anomalous mobility edges. These
results shed new light on the localization and critical properties of low-dimensional systems
with aperiodic order


Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.


Más información De acuerdo