We study the effect that the injection of a common source of noise has on the trajectories of chaotic systems, addressing some contradictory results present in the literature. We present particular examples of 1-d maps and the Lorenz system, both in the chaotic region, and give numerical evidence showing that the addition of a common noise to different trajectories, which start from different initial conditions, leads eventually to their perfect synchronization. When synchronization occurs, the largest Lyapunov exponent becomes negative. For a simple map we are able to show this phenomenon analytically. Finally, we analyze the structural stability of the phenomenon.
Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.