Analytical and Numerical Studies of Noise-induced Synchronization of Chaotic Systems

Toral, Raúl; Mirasso, Claudio; Hernández-García, Emilio; Piro, Oreste
Chaos 11, 665-673 (2001)

We study the effect that the injection of a common source of noise
has on the trajectories of chaotic systems, addressing some
contradictory results present in the literature. We present
particular examples of 1-d maps and the Lorenz system, both in the
chaotic region, and give numerical evidence showing that the
addition of a common noise to different trajectories, which start
from different initial conditions, leads eventually to their
perfect synchronization. When synchronization occurs, the largest
Lyapunov exponent becomes negative. For a simple map we are able
to show this phenomenon analytically. Finally, we analyze the
structural stability of the phenomenon.

Additional files


Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.


Más información De acuerdo