We consider a general model exhibiting type-I excitability mediated by a homoclinic and a saddle node on the invariant circle bifurcations. We show how the distinct properties of type-I with respect to type-II excitability confer unique features to traveling pulses in excitable media. They inherit the characteristic divergence of type-I excitable trajectories at threshold exhibiting analogous scalings in the spatial thickness of the pulses. Our results pave the way to identify basic underlying mechanisms behind type-I excitable pulses based solely on the characteristics of the pulse.
Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.