Time and space generalized diffusion equation on graph/networks

Estrada, Ernesto; Diaz-Diaz, Fernando
Chaos, Solitons and Fractals 156, 111791 (1-9) (2022)

Normal and anomalous diffusion are ubiquitous in many complex systems [1]. Here, we define a time and space generalized diffusion equation (GDE), which uses fractional-time derivatives and transformed d-path Laplacian operators on graphs/networks. We find analytically the solution of this equation and prove that it covers the regimes of normal, sub- and superdiffusion as a function of the two parameters of the model. We extend the GDE to consider a system with temporal alternancy of normal and anomalous diffusion which can be observed for instance in the diffusion of proteins along a DNA chain. We perform computational experiments on a one-dimensional system emulating a linear DNA chain. It is shown that a subdiffusive-superdiffusive alternant regime allows the diffusive particle to explore more slowly small regions of the chain with a faster global exploration, than a subdiffusive-subdiffusive regime. Therefore, an alternancy of sliding (subdiffusive) with hopping and intersegmental transfer (superdiffusive) mechanisms show important advances for protein-DNA interactions.


Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.


Més informació D'accord