A brief review is made of the birth and evolution of the ‘‘nonequilibrium potential’’ (NEP) concept. As if providing a landscape for qualitative reasoning were not helpful enough, the NEP adds a quantitative dimension to the qualitative theory of differential equations and provides a global Lyapunov function for the deterministic dynamics. Here we illustrate the usefulness of the NEP to draw results on stochastic thermodynamics: the Jarzynski equality in the Wilson–Cowan model (a population-competition model of the neocortex) and a ‘‘thermodynamic uncertainty relation’’ (TUR) in the KPZ equation (the stochastic field theory of kinetic interface roughening). Additionally, we discuss system-size stochastic resonance in the Wilson–Cowan model and relevant aspects of KPZ phenomenology like the EW–KPZ crossover and the memory of initial conditions.
Cercar a totes les publicacions
Avís legal
Coming soon
intranet
Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.