We consider the curvature driven dynamics of a domain wall separating two equivalent states in systems displaying a modulational instability of a flat front. We derive an amplitude equation for the dynamics of the curvature close to the bifurcation point from growing to shrinking circular droplets. We predict the existence of stable droplets with a radius R that diverges at the bifurcation point, where a curvature driven growth law R(t) ~ t^1/4 is obtained. Our general analytical predictions, which are valid for a wide variety of systems including models of nonlinear optical cavities and reaction-diffusion systems, are illustrated in the parametrically driven complex Ginzburg-Landau equation.
Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.