Spatiotemporal chaos, localized structures and synchronization in the vector complex Ginzburg-Landau equation.

Hernández-García, Emilio; Hoyuelos, Miguel; Colet, Pere; Montagne, Raúl; San Miguel, Maxi
International Journal of Bifurcation and Chaos 9, 2257-2264 (1999)

We study the spatiotemporal dynamics, in one and two spatial dimensions, of two complex fields which are the two components of a vector field satisfying a vector form of the complex Ginzburg-Landau equation.
We find synchronization and generalized synchronization of the spatiotemporally chaotic dynamics. The two kinds of synchronization can coexist simultaneously in different regions of the space, and they are mediated by localized structures. A quantitative characterization of the degree of synchronization is given in terms mutual information measures.

Additional files


Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.


Més informació D'accord