On the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way.
Cercar a totes les publicacions
Avís legal
Coming soon
intranet
Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.