We study communities emerging from generalized random Lotka-Volterra dynamics with a large number of species with interactions determined by the degree of niche overlap. Each species is endowed with a number of traits, and competition between pairs of species increases with their similarity in trait space. This leads to a model with random Hopfield-like interactions. We use tools from the theory of disordered systems, notably dynamic mean-field theory, to characterize the statistics of the resulting communities at stable fixed points and determine analytically when stability breaks down. Two distinct types of transition are identified in this way, both marked by diverging abundances but differing in the behavior of the integrated response function. At fixed points only a fraction of the initial pool of species survives. We numerically study the eigenvalue spectra of the interaction matrix between extant species. We find evidence that the two types of dynamical transition are, respectively, associated with the bulk spectrum or an outlier eigenvalue crossing into the right half of the complex plane.
Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.