Experimentally Detecting Quantized Zak Phases without Chiral Symmetry in Photonic Lattices

Jiao, Zhi-Qiang; Longhi, Stefano; Wang, Xiao-Wei ; Gao, Jun; Zhou, Wen-Hao ; Wang, Yao ; Fu, Yu-Xuan ; Wang, Li; Ren, Ruo-Jing; Qiao, Lu-Feng; Jin, Xian-Min
Physical Review Letters 127, 147401 (1-7) (2021)

Symmetries play a major role in identifying topological phases of matter and in establishing a direct connection between protected edge states and topological bulk invariants via the bulk-boundary correspondence. One-dimensional lattices are deemed to be protected by chiral symmetry, exhibiting quantized Zak phases and protected edge states, but not for all cases. Here, we experimentally realize an extended Su-Schrieffer-Heeger model with broken chiral symmetry by engineering one-dimensional zigzag photonic lattices, where the long-range hopping breaks chiral symmetry but ensures the existence of inversion symmetry. By the averaged mean displacement method, we detect topological invariants directly in the bulk through the continuous-time quantum walk of photons. Our results demonstrate that inversion symmetry protects the quantized Zak phase but edge states can disappear in the topological nontrivial phase, thus breaking the conventional bulk-boundary correspondence. Our photonic lattice provides a useful platform to study the interplay among topological phases, symmetries, and the bulk-boundary correspondence.

Additional files

Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.

Més informació D'accord