Boundary effects in extended dynamical systems

Eguiluz, Victor M.; Hernandez-Garcia, Emilio; Piro, Oreste
Physica A 283, 48-51 (2000)

In the framework of spatially extended dynamical systems, we
present three examples in which the presence of walls lead to
dynamic behavior qualitatively different from the one obtained in
an infinite domain or under periodic boundary conditions. For a
nonlinear reaction-diffusion model we obtain boundary-induced
spatially chaotic configurations. Nontrivial average patterns
arising from boundaries are shown to appear in spatiotemporally
chaotic states of the Kuramoto-Sivashinsky model. Finally, walls
organize novel states in simulations of the complex
Ginzburg-Landau equation.



This is a contribution submitted to the proceedigs of LAWNP'99.


Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.


Més informació D'accord