Average Patterns of Spatiotemporal Chaos: a Boundary Effect

Eguiluz, Victor M.; Alstrom, Preben; Hernandez-Garcia, Emilio; Piro, Oreste
Phys. Rev. E 59, 2822-2825 (1999)

We consider time-averaged patterns obtained from the Kuramoto-Sivashinsky equation in a bounded domain. The average patterns recover global symmetries broken locally by the chaotic fluctuations. Their amplitude is strongest at the boundaries and decays with increasing distance to them. The law of decay is found and explained. The wavenumber selected by the average pattern is studied as a function of system size and the different behavior between the central and boundary regions is discussed. Most of these observations agree with experimental results in different systems, thus indicating a degree of universality in the behavior of average patterns.

More info

Additional files


Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.


Més informació D'accord